Approximate algorithms for solving the multidimensional knapsack problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Multidimensional Knapsack Problem: Structure and Algorithms
Structure and Algorithms Jakob Puchinger NICTA Victoria Laboratory Department of Computer Science & Software Engineering University of Melbourne, Australia [email protected] Günther R. Raidl Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria [email protected] Ulrich Pferschy Department of Statistics and Operations Research University of Graz, Au...
متن کاملOverview of the Algorithms for Solving the Multidimensional Knapsack Problems
The multidimensional knapsack problem is defined as an optimization problem that is NP-hard combinatorial. The multidimensional knapsack problems have large applications, which include many applicable problems from different area, like cargo loading, cutting stock, bin-packing, financial and other management, etc. This paper reviews some researches published in the literature. The concentrate i...
متن کاملNew Hybrid Matheuristics for Solving the Multidimensional Knapsack Problem
In this paper we propose new hybrid methods for solving the multidimensional knapsack problem. They can be viewed as matheuristics that combine mathematical programming with the variable neighbourhood decomposition search heuristic. In each iteration a relaxation of the problem is solved to guide the generation of the neighbourhoods. Then the problem is enriched with a pseudo-cut to produce a s...
متن کاملHeuristic Approaches for Solving the Multidimensional Knapsack Problem (MKP)
There are exact and heuristic algorithms for solving the MKP. Solution quality and time complexity are two main differences among exact and heuristic algorithms. Solution quality is a measure of how close we are from the optimal point and time complexity is a measure of the required time to reach such point. The purpose of this paper is to report the solution quality obtained from the evaluatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Researches in Mathematics and Mechanics
سال: 2017
ISSN: 2519-206X
DOI: 10.18524/2519-206x.2017.2(30).135745